Mediator Directs Co-transcriptional Heterochromatin Assembly by RNA Interference-Dependent and -Independent Pathways

نویسندگان

  • Eriko Oya
  • Hiroaki Kato
  • Yuji Chikashige
  • Chihiro Tsutsumi
  • Yasushi Hiraoka
  • Yota Murakami
چکیده

Heterochromatin at the pericentromeric repeats in fission yeast is assembled and spread by an RNAi-dependent mechanism, which is coupled with the transcription of non-coding RNA from the repeats by RNA polymerase II. In addition, Rrp6, a component of the nuclear exosome, also contributes to heterochromatin assembly and is coupled with non-coding RNA transcription. The multi-subunit complex Mediator, which directs initiation of RNA polymerase II-dependent transcription, has recently been suggested to function after initiation in processes such as elongation of transcription and splicing. However, the role of Mediator in the regulation of chromatin structure is not well understood. We investigated the role of Mediator in pericentromeric heterochromatin formation and found that deletion of specific subunits of the head domain of Mediator compromised heterochromatin structure. The Mediator head domain was required for Rrp6-dependent heterochromatin nucleation at the pericentromere and for RNAi-dependent spreading of heterochromatin into the neighboring region. In the latter process, Mediator appeared to contribute to efficient processing of siRNA from transcribed non-coding RNA, which was required for efficient spreading of heterochromatin. Furthermore, the head domain directed efficient transcription in heterochromatin. These results reveal a pivotal role for Mediator in multiple steps of transcription-coupled formation of pericentromeric heterochromatin. This observation further extends the role of Mediator to co-transcriptional chromatin regulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sgf73, a subunit of SAGA complex, is required for the assembly of RITS complex in fission yeast

RNA interference (RNAi) is a widespread gene-silencing mechanism and is required for heterochromatin assembly in a variety of organisms. The RNA-induced transcriptional silencing complex (RITS), composed of Ago1, Tas3 and Chp1, is a key component of RNAi machinery in fission yeast that connects short interference RNA (siRNA) and heterochromatin formation. However, the process by which RITS is a...

متن کامل

Dicer-Independent Primal RNAs Trigger RNAi and Heterochromatin Formation

Assembly of fission yeast pericentromeric heterochromatin and generation of small interfering RNAs (siRNAs) from noncoding centromeric transcripts are mutually dependent processes. How this interdependent positive feedback loop is first triggered is a fundamental unanswered question. Here, we show that two distinct Argonaute (Ago1)-dependent pathways mediate small RNA generation. RNA-dependent ...

متن کامل

Studies on the mechanism of RNAi-dependent heterochromatin assembly.

Assembly of heterochromatin at centromeric DNA regions in the fission yeast Schizosaccharomyces pombe involves an intimate interplay between chromatin modifying complexes and components of the RNAi pathway. The RNA-induced transcriptional silencing (RITS) complex, containing Chp1, Ago1, Tas3, and centromeric siRNAs, localizes to centromeric DNA repeats and is required for the assembly and maint...

متن کامل

RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production.

In fission yeast, factors involved in the RNA interference (RNAi) pathway including Argonaute, Dicer, and RNA-dependent RNA polymerase are required for heterochromatin assembly at centromeric repeats and the silent mating-type region. Previously, we have shown that RNA-induced initiation of transcriptional gene silencing (RITS) complex containing the Argonaute protein and small interfering RNAs...

متن کامل

Investigating the Role of RNA Polymerase II in RNAi-dependent Heterochromatin Assembly at Centromeric Repeats

In Schizosaccharomyces pombe, a fission yeast, large domains of heterochromatin are found at telomeres, silent mating-type loci, and centromeric repeat regions of DNA (Bühler and Moazed, 2007). Much of the work done with S. pombe has shown that the assembly of heterochromatin around centromeric repeats depends on the coordination of two pathways: RNAi and histone modification. Current models su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2013